

The Game of Cells

An Interactive Installation that explores a Digital Genetic Model and invites the User to become a Scientist:

The Creator and the Observer in a Simulation.

	:00	NN
	The Game of Cells	NN I
The Game of Cells		

1 The Game		Guanine	
2 The Instal	llation	Cytosine	
	Photographs Stations	X	3 The Cells
	Schemaucs	Thymine	Digital Biology
4 The Experien	се	S	Digital Genesis
	Exhibition Press	X	Digital Simulation
Th	anks to:	Š	

The Magical Feeling of Creation.

Or the powerful feeling of being able to model a symbolic representation of an agent that can interact and react to other agents.

The Finger of God.

Or the possession of a fleshy finger that can place, at will, a graphical Instance of a complex Class over a digital Petri dish.

The Mad Scientist's Lab

Or an installation that makes Genetic Biology accessible to those foreign to the Natural Sciences.

The Decoding of a Genome.

Or the Decoding of a Digital Genome.

Welcome to The Game of Cells.

The Discovery of Life. | The Understanding of Life. | The Engineering of Life. | The Observation of Life. | The Discovery of Life. |

The Game of Cells is conceived to be an installation that merges various scientific aspects, in order to give the user an accessible experience to Cellular Biology and Genetics.

It is strongly inspired by John Conway's famous "The Game of Life", and the abilities frequently use in Role-Playing Games.

The aim is to, over the surface, bring a friendly user interface to operate on, and below the surface, carry out digital virtual analogies of biological processes.

At the same time, merge them in a way that would not only become a fun experience, but also spark an interest on what is actually behind the scenes, what is creating such an attractive visualization.

Thus operating in different levels: There's a beauty that can be somewhat controlled by the creator, us. But deep down, many levels below, very complex processes are being executed with incredible precision. Concurrently, many levels above, clear behaviors are recognize, and patterns emerge.

Just like in Life. Just like in Computer Programming. Just like in Genetics. Just like in The Game of Cells.

Although the Simulation aspect is full of rules, the objective of "The Game of Cells" is to make it as playful as possible. This means that a lot of randomness is put into the simulation, somehow blurring possible emerging patterns, to clear the way to the animation of frisky cells, predominant reproduction, interactive magic, and an attractive visual canvas.

Photographs

2. The Installation Photographs

;

Photographs

2. The Installation Photographs

KKKKKKK

The installation operates over 2 Stations.

Station 1 The Laboratory

Stations

The Player, via a Custom Modeling Control Panel specially built for the Genetic Modeling of the Virtual Cell, is able to engineer his own cell, drawing it's shape parametrically and assigning personality attributes such as Love or Hate. At the same time, the player can name his cell.

When ready, the pressing of a giant button will create the Genetic Seed and shoot it towards the Second Station.

The electronics for the control panel are built with an Arduino Mega.

Station 2 The Microscope

It allows for the observation of the interaction between the cells of all players, inside a simulation with visual cues that permit the understanding of the interactions taking place.

By means of a projection that simulates the view over a microscope eye-piece, the player is able to insert his cell in any location just by pointing and touching with his finger over the projection.

A Player Cell displays it's name-tag so that each player can follow his own cell throughout his lifeSpan.

The Microsoft Kinect Sensor is used to sense user spatial data.

E Digital Biology

The Cells are the stars of the show.

Living throughout the 2 stations, they are shaped, engineered, moved, and born following digital analogies of biological processes and mathematical interpretations.

It is important to understand that everything that makes up a cell is encoded in their Digital DNA, and any kind of user-constructed attribute will inevitably have to code it's parameters into the genetic level.

This way, processes like Inheritance, Mutation or CrossOver can be carried out correctly.

This section spreads across 3 sub-Sections:

Digital Genesis

Shape and the Super-Formula Balanced Attributes.

Digital Genetics

Binary DNA Strand Genotype and Phenotype

Digital Simulation

Rules of Interaction Reproduction

Digital Genesis

3. The Cells

Cells can be born in 2 ways:

- 1 With randomly-generated genetic information.
- 2 With partly user-generated genetic information.

Station 1 focuses on letting the user generate some of the genetic information, while other is left random, for practical reasons.

An Arduino controlled Modeling panel was built to deal with Cell Shape and Personality Attributes.

It is much more exciting and engaging for the user to handle non-conventional input devices. Thus, the Control Panel was customized to follow the aesthetics and bring some immersion to the installation.

Cell Shape is parametrically constructed following Johan Gielis formula for the Super-Shapes, and personality attributes are balanced against each other.

The User-Controlled Personality Attributes are the following:

Other Non User-Controlled Attributes deal with Motion (Velocity, Distance, Timers), which also directly affect cell interaction.

Although other cell shaping methods were tried, the superFormula undoubtedly became the most straightforward and effective way of dealing with complex shapes with few controllable parameters.

From Wikipedia:

The superFormula is a generalization of the superEllipse and was first proposed by Johan Gielis.

Gielis suggested that the formula can be used to describe many complex shapes and curves that are found in nature.

Where:

r = radius $\ominus = angle (in radians)$

a, b, m, n1, n2, n3 = Input for the shape (resulting in an organic output)

The Modeler Panel

The Modeler is a Custom-built Arduino-controlled Panel that let's the user create a cell via an array of knobs.

It presents 3 sections:

- 6 knobs to input parameters into the superFormula,
- 3 other knobs to balance personality attributes,
- -1 Giant Button (which is a hacked Staples' "Easy Button") to send the cell seed.

At the same time, the user can name the cell via a keyboard.

Once the user is satisfied with his cell, the Button triggers a function that encapsulates the data into an OSC message, which is sent to the Simulation (The microscope).

3. The Cells

Digital Genesis

The Modeler Panel - Electronics Schematics

:::

3. The Cells

Digital

Digital Genetics - A Cell

010110101101010000100010 111011110001000101011010110 10110101010101101011101111 000100010101101010101011 010111011110001000101011010 110101101010101010101011101 1110001000101110101101011 1011110001000101101011010 110101010101101001101110

3. The Cells

Digital Genetics

This is a Cell

One of the objectives of The Game of Cells is to create a simple digital analogy of DNA Structures, and present an abridged reproduction system.

This is hidden from the user and his interactions, but plays a crucial part during the simulation and cell interaction.

Genotype ::

While a single base can be 1 out of 4 types (A, T, G, C), there only 2 ways in which they can be found, as nucleoBases *(ignoring inverted bases)*. Thus, they could be represented as Pair 0, or Pair 1.

3. The Cells

Digital Genetics

A single bit is restricted to 2 "types" (Zero, One). Therefore, a digital DNA Strand can be formed out of Gene-Bytes that contain 8 nucleoBases-Bits, with each one representing 1 of the 2 pairs of base bonding.

There's a difference between the Biological Genes and Digital Bytes: Genes do not have a fixed length (number of nucleoBases), while a Byte does have a fixed length of 8 bits. This is called an **Octet**.

Strictly speaking, it is not the only type of Byte (there exists the **"Nybble"**, or half-Octet, or HexDigit, which is a 4-bit Byte) but it is the Standard Unit Type. To make up for this length issue, Bytes are abstractly grouped into **Compound Bytes** that address certain attributes of the cell.

In The Game of Cells, the genotype is encapsulated in a Class simply called "Genes", which also contains decoding information and useful methods for Bit manipulation (done via the Java BitSet Class).

The correspondence between the Natural DNA structure and it's digital translation is quite direct and straightforward.

Biologically speaking, there are 4 molecules (called **MacroMolecules**) that constitute the most basic building blocks of every living organism: DNA, Proteins, CarboHydrates and Lipids.

DNA is special, because it contains all the necesary information, the **Genotype**, that gives the organism it's identity. The expression of the genotype into physical attributes is called the **Phenotype**, and this will determine how the organism deals with his environment.

A **DNA Strand** is formed out of **4 Bases** (Adenine, Thymine, Guanine and Cytosine) that are coiled and linked together. These 4 bases pair with one another in a very strict way: Adenine only pairs with Thymine, and Guanine only pairs with Cytosine. These 2 pairs are called **nucleoBases**.

In order to be read (or transcribed) correctly, these nucleoBases are grouped together in units called **Genes**, which actually make sense to the reader/transcriber. (*Note that not all portions of the DNA Strand are Genes, only the nucleoBases that can be coded into proteins.*) Although the structure and workings of genes is far more complex, this simplification provides enough room to play with.

In Computer Software Programming, the simplest, most basic building block is the **Bit**. Everything that is programmed will eventually be down-mix to bits for the computer to process and carry out procedures.

But the tiniest block of data that the computer can process is a **Byte**, which is group of 8 Bits. As the C++ and C Language Standard defines it, it is the *"addressable unit of data storage large enough to hold any member of the basic character set of the execution environment".*

Just like a Gene, a Byte makes sense to a computer.

Gene Table :::::•

Slo	t Key		Physical Personality	
	0 0		Cell Size	
	1 1.0			A
	1.1	-		B
	1.2	-	Cell Shape	N1
	1.3	-	(Johan Gielis SuperFormula parameters)	N2
	1.4			N3
	1.5	-		M
	2 7.0		·	R
	7.1		CytoPlasm Color	G
	7.2	-		B
	3 10		Wall Width	
	4 11.0		·	R
	11.1	-	Wall Color	G
	11.2	-		B
	5 14		Wall Width Variation	
	6 15		Cellular Apparatus Count	
	7 16		Cilia Count	
	8 17		Cilia Shakiness	
	9 18		Velocity	
1	0 19		LifeSpan / Life Expectancy	
-	1 20.0			Max Distance
	20.1		Movement	Move Timer
	20.2			Wait Timer
1	2 23.0			Sociability
	23.1			Love
	23.2		Attributes	Reproductive Powe
	23.3			Hate
	23.4			Brute Force
tal Gene	s: 28	x8	224 bases	

Phenotype :

3. The Cells

Digital Genetics

The Genotype is decoded and translate to visual and animation attributes, it's **Digital Phenotype**. And because not all attributes can be user-controlled and some randomness is added, no 2 cells will be identical. These are organized in diferent layers, which, in code, are subClasses of a Layer class.

Some attributes translate to the motion of the Cell. For instance, the various Timers in the Gene Table control the translation phases. This, in turn, affects the chances the cell has to come into contact with other cells.

The LifeSpan attribute is in charge of visually decaying the cell: It's colors will gradually lose opacity according to the following curve:

Digital Simulation - Canvas and Rules

Canvas

Station 2 is the simulation canvas.

It's a virtual microscope eye-piece, with the ability of giving birth to new cells via a user interaction.

It also shows a friendly HUD where global simulation variables are display, such as OverPopulation Warning, Cell Count, Cell Insertion Mode, among others.

The simulation starts with no cells. The users are in charge of filling the world with cells but, in case the input is too little over a certain time window, an automatic generation process is triggered, creating cells with no nameTag.

Cells go about, moving, waiting, shifting, veering, resting, drifting, gliding. It looks like they are totally free in their medium, but in reality, the simulation follows various rules. These are some of them:

Cells will only engage in interaction if they are going through their WaitTime, and not when they are drifting. This means that if a cell is genetically predisposed to drift a lot, with a short wait time, it is more likely to miss interaction events, which might also mean not reproducing, leaving fewer offspring.

- Interaction is not permitted with a direct member of the genetic family: Father, Mother and Brothers. Every cell is assigned an ID. At the moment of birth, the cell stores it's parent's IDs, and this information is used to check direct inBreeding.
- Cells will not engage with more than 1 cell at a time.

Bullying and orgies are not permitted.

OverPopulation will idle all interactions.

An overPopulated society usually means that there are not enough resources to assign to all members, therefore decreasing quality of life, giving free way to death. This rule is an overSimplified abstraction of population control, thus serves well to avoid uncontrolled reproduction.

Cells will tend to drift inside the microscope active area.

We want them to be free, but at the same time be able to watch them. Just like a Zoo.

3. The Cells

Digital Simulation

2-Cell Engagement

Once two cells effectively engage in an interaction, there's a simple tree of decisions they follow to end up either reproducing, or killing themselves.

The decisions are based on the Personality Attributes of each cell, and are compared with simple probability, to decide events or come to a conclusion. Therefore if two cells have a Sociability value of 95%, it is very likely they will both want to engage.

3. The Cells

Digital Simulation

If, by a mere chance (the odds of life), they don't, the cells just disEngage and continue drifting about.

This decision process is repeated along the tree, with Love-Hate and Reproduction-BruteForce, respectively.

Reproduction

Digital Simulation

3. The Cells

The Reproduction Stage is one of the most important stages of the simulation.

It is where the genetics are more present, and where the previous modeling of a cell starts to express itself in terms of the simulation.

Offspring possess a shared amount of genes coming from the parents, and this inheritance is visually clear.

For example, a child might inherit the shape of the father and the colors of the mother. This results in a cell which is different, but very similar to it's parents, and can graphically be traced back.

The following genetic processes take place, which are an analogue simplification of natural processes:

After DNA Extraction, Gene CrossOver takes place. Apart from the genes themselves, the Gene Package with the decoder, which knows how to properly select the meaningful portions of the Strand. Although Compound Genes can be stripped and subSelected, this might lead to very different variations that did not originate from a mutation.

The Mutation Stage doesn't really care about genes at all. And that's the fun of it: it inserts Bit-flippings so randomly across the strand, that a single mutation can cause a huge variation in the offspring, or have almost no discernable effect. It all depends where that mutation lands. For example, if we were to insert 1 mutation on 1 Gene (1 Byte), flipping the last binary digit will cause a miniature value change, while flipping the first binary digit will mean an enormous change.

Digital

3. The Cells Simulation

Articulating the simulation meant a clear hierarchy and class communication. The following graph shows a hierarchical structure of the Application's classes. All names are classes, except what is written between parenthesis.

Code was written in Java, using the Processing Library for graphics, and other libraries written for Processing.

Bear in mind that there is a lot of class exchange:

For example, a Cell can live on it's own inside the CellManager, but when it is interacting, both cells get passed over to the InteractionManager, which takes control of them until the interaction is finished. If there are no 2 cells interacting, an instance of this class would not be created.

The same thing happens with the GenePack. Genes are read everywhere from Seed, to the CellManager, onto the Cell itself, and scrambled around in the InteractionManager.

The Seed contains the incoming User-Generated Attributes from the Modeler Station, and does not update until a new Seed is received.

The MicroParticles are tiny elements that simulate the dusty organic granules floating about when observing down a microscope.

The KinectManager is a class that handles all Kinect Sensor input, and delivers a Calibration GUI to properly map and swap 2D and Depth Data.

The Game of Cells was first exhibited at Calos Lab, on December 14, 2012, as part of a Tech Expo, where Pleek presented with other visual and audio exhibitors.

Calos is a Social Welfare Foundation of the Korean Community in Argentina, that helps in the treatment of children with mental disabilities. Calos Lab has been merging New Technologies inside their activities for 3 years now, and puts on an Exhibition every end-of-year.

The installation did not only composed of The Game itself, but framed a complete "Scientific" section of the Expo, where various lab toys were available to children, along with versions of the Rubik's Cube, including a digital one.

The Experience Press

At the start of the evening, people were somehow shy over the different ways of interaction that The Game provided.

Like it usually happens, the first ones to freely interact were the children, who discovered that it was very easy, and even found new ways to engage The Game, ways that were not thought of, or tested, before the exhibition.

Adults slowly approached the first Station, and after naming and finishing their cell, they were not able to insert it into the simulation themselves, as children were packed in front of the Microscope, absorbed in a sort of Cell-Insertion frenzy. This dynamic continued throughout the whole evening.

A very important event occurred during the evening, at repeated times. It was important because it represented a milestone for one of the objectives of the installation: to ignite the scientific-learning spark on the user/child.

I was dressed as the Mad Scientist behind the Lab, and guided the show. At some point or another, a child would approach me, with awe-filled eyes, and a thirst of curiosity running through the veins. The first time it happened, it made me so happy. She was a little girl, of about 7 years of age. She came to me, grabbed my hand, and asked me, "What are the cells? How do you make them?".

I then realized the installation was working, reaching and creating an effect on the children.

Of course, it was very difficult to answer the question, and even more difficult was to correctly interpret it. But what left me calm and content was the fact the child's parents were there, and they improvised an appropriate answer that only made the child more curious.

The adult's concerns revolved around the workings of the installation and simulation.

Press release of The Korean Network in Argentina

http://www.kornet24.com/kornetnews/180772

Prite

A 10 14-5

5412

한민족센터 (이미지)

/시회에는 겉로스 웹(LAB)의 정신지체아들의 치료를 돕는 덜티미디어 시스템과 사진이 전시했

·행유 전의 미구스의 카스레나, 후카 파봉로 포도우감, 니끌관스 디아스 까사다로 세가 파로스에서 2 학습을 받고 있는 여린이들을 위해 고만 제작한 것으로, 터치스크린 상의 도랑들을 이민이들이 손으로 자유롭게 이 하거나 변형할 수 있고, 또 동작센사에 김지된 움직업이 스크린에 나타나거나 스크린에 보시된 구형을 손으로 움직임 인도로 하는 즉 장시지세아들이 확의적이 문장을 통해 두뇌반당기 사회상을 높이도로 쉽고 있는

이주혀 복지사는 전시회를 찾은 방문객들에게 활양의 빛을 표하고, "하나님의 빛으로 9년 편의 공과 비전이 질로스로 [위했고, 지양까지 모든 것을 이끄했고 오늘 여러분의 만남도 계획하셨다"며, "올해 비전은 말로스 앱을 통해 지식과 여, 예술, 사랑과 영경을 도명이 필요한 어린이들에게 전화는 것으로, 개발과 연구를 계속하고 있다"고 전했다

이 복지사는 "형편이 어려운 어린이들에게 장학금을 지급하는 중앙테니스클럽과 한전상인연합회 그리고 전 을 기름한 사진플링 필그림에 감사드린다"며, "사진은 아이들의 치료에 올용될 것"이라고 덧붙였

중교소는 자백아, 다양종루군 등의 장비가 있거나 고아, 기다 장애나 연지능력이 무룩한 이이들의 정신적 상담과 치료 5 같아 하는 정식 법업음록 기공으로 이 복지사가 97년 개인적으로 사작한 것이 2004년 학원 웹패로 착장된 후, 2007

고려 월년부 학생들이 쉽지 아 취 문제다. 교육회원 지수

Idea, Graphic Design, Electronics, Software Programming and Implementation: Agustín Ramos Anzorena

Coded in Processing

Thanx To:

Calos Lab, Perla Lee and everyone at Calos. The Venue and it's Director/Organizer.

Juan Pablo MacDougall (http://ofmac.blogspot.com.ar), Lautaro Castillo, Diego Paramo, Daniel Hong and all the exhibitors. The Exhibitors.

Guido Corallo (http://www.gcrll.net/) and his Students. The Processing Workshop where this Installation took off.

Patricio Gonzalez Vivo (http://www.patriciogonzalezvivo.com) For igniting our bond with Calos Lab, and for his nerdy programming workshops.

My Family. Sometimes they don't know what the heck I'm doing, but they still have faith in me.

Guillermina Inés Ortega. For loving me and letting me populate our small house with all sort of strange gadgets.

Manuel Lopez Lecube. For sharing his Biology knowledge.

Miguel Ángel Morkin. For his friendship and valuable support.

Continente 7 (http://www.continentesiete.com). For "Hydra" and support.

Sabrina Mayra Dubovsky. For photography.

The Libraries Contributers:

Casey Reas, Ben Fry and the Processing Development Team Max Rheiner, for Simple-OpenNI. Benedikt Groß, for ANI. Andreas Schlegel, for ControlP5 and OscP5. David A. Mellis, for Arduino Library.

www.pleek.net www.pleek.net/blog play@pleek.net