

MarkovPaint...

... is about tables, grids and pixels.

... is about transforming a perfectly logical arrangement of numbers, into a perfectly coloured canvas of digital art.

... is about creating a unique probability-based artistic finger-print.

... is about showing that numbers can be fun and beautifull too.

MarkovPaint is a little experiment that wishes to interpret results
coming out of mathematical processes and translate them into visual
graphics, shifting our approach and interpretation of the numbers.

They are mental no more.

Stripped from logic, they are percieved visually,
providing totally different sensations.

isAbout

Contents

isAbout
wasBorn
wasThought

isRendered

Analyzing the RAE Dictionary
FlowChart

Table of Raw Data
Markov Chains
Table of Normalized Data
Validation
Markov Chain Algorithm
Algorithm to Code
Values of Dimension
Depth Map

Creative Graphics

wasBorn

I recently started working at Continente 7, a consulting company that
specializes in working with numbers and complexity to run scenario
simulations for sales forecasts, among other services.
Every friday, it's “compulsory” for the employees to find a project or
research on a topic we like, where we will be able to “squeeze our brains”
and come out with results (such as a specific algorithm or a methodology)
that could be used for later application on company projects.

I jumped into a project that intended to create a word/phrase generator,
with the ability to learn and improve it's generation.
Research on text generation techniques begun. Among others, I found
Disassociated Press and started to code on that. The outcomes were pretty
interesting, but I didn't really see a lot of future for advance application.
Other techniques I research were the Dadaist Cut and Paste, Neural
Networks, and Probabilistic Markov Chains methods.

The objective was to use one of these techniques for graphical purposes.

wasThought

MarkovPaint is the result of the investigation and application of
Markov Chains to generate custom graphics.

MarkovPaint is a Computer Program.
The user can type his name (or any other phrase) which will be
translated into a visual representation, with various graphical functions.

Representations will be as unique as the probability the characters
have of appearing in the order they are typed in.

This happens because the characters are plotted and ran through
Markov Chain Matrices.
The process spits out some values for each character, which are then
interpreted as coordinates for 2 dimensional drawing, with a 3rd
dimension translated as a Depth Map, and used to control various
properties of the drawing.

Add some very weak randomness to this, and no representa-
tion will ever be identical, but at the same time will follow a
very strict set of rules.

These rules are initially set by analizing the RAE Dictionary
(The Dictionary of the Royal Spanish Academy), and evolve as
the characters typed are read.

isRendered

The following gallery is a showcase of some of the outputs generated for the input:

“Continente Siete”

The amount of outputs can be infinite, because the amount of graphical function
that may interpret the values from the matrices can be infinite too. This simply
depends on the creativity of the coder.

As you will see, some graphical representations clearly give away the underlying
coordinates for the input, and others appear to have no connection at all between
the math and the drawing.

All graphics are coded and programmed in Processing

Thermal Vision
Values mapped to Hue Spectrum

80´s MainFrame
Vertical pixel displacement

Flowers on a Pond
Arc count increments, randomly rotating. Colors mapped to Value.

Kidʼs Game
Hue and Rotation on a Module

SunBurst
Hue and line weight traced from an origin

Countour Landscape
Vertical and Horizontal pixel displacement

Needle in a HayStack
Variation and Concentration of hay

Moire
Circle diameter changes over a grid

Op Art
Minor diameter variation over nodes

Knitting Pattern
Grid of crosses overlapping

Whereʼs Waldo?
Concentration of Waldos around nodes. (The real Waldo lost his hat, but got a brand new green one!!)

Magnetism
Saturation and Rotation on a Directional Module

Mondrian would be proud !!
Nodes control various properties of the Rectangle

Turbulent Clouds
Overlapping circles create distortion

PaperCut
Rotating and Overlapping rectangles

Vertigo
Directional modules on a tight grid

Untitled Number One
Curves and Planes interact wildly

SpiderWebs
Spirals and Lightness

Sunset Horizon
Low Nodes control water tide, High Nodes control sun properties. The whale is just cute.

Theory
This section will explain the theory behind the processes involved.

First, the good old flowchart:

RAE Dictionary

Occurrence Analysis

Stochastic Matrix

Raw Values

Normalized Values X and Y Values

Input

Z Value

User Input

Evolve Matrix

Graphical Coordinates Create Depth Map Graphical Functions

Draw Art

Build Full Chain

Save Probability
Pi,j

Extraction of
Individual Characters

Select Characters i and j

Analyzing the RAE Dictionary

The first step of the process is determining the initial probability of
the system, or technically speaking, creating the Transition or
Stochastic Matrix.

This means plotting a two-entry table where both axis contain the
same letters to be analyzed, and the values inside the table tell us the
probability of the letter at the horizontal axis to appear after the
letter at the vertical axis.

The RAE Dictionary (The Dictionary of the Royal Spanish Academy)
was used as a universal source for the creation of the table.
The program reads the whole dictionary and examines the
appearence of a letter after other letter, filling the chart with integer
values. The rows of one column show the number of times the letter
at the row appears after the letter at the column. The sum of the
entire column is the total number of occurrences of the letter in the
dictionary.

In reality, the only way to determine the real probabilities of
letter occurrences in the language is to analyze every single
book ever written and continue analyzing the future ones.

This is impractical for two reasons:
1 - It's practically impossible, specially taking into account very
old writings that are not digitalized, and publisher rights that can
restrict access to texts.
2 - The probabilities will tend to stabilize as we included more
and more books. Contrast will increase.

It seemed perfectly logical to analyze a dictionary, since it
included all the possible words that could be used in any other
text. But this does not take into account the frequency of the
words.
To my surprise, and after analyzing other books, like Don
Quijote de la Mancha, the Validation process proved that this
approach was enough and worked.

The output of this process is the following table:

Table of Raw Data
Showing total number of ocurrences of letter at Y-axis after letter at X-axis

Markov Chains

With the Raw Values, columns are normalized.
They will add up to 1, and are called Probability Vectors.

This normalized table is the Original Stochastic matrix that sets the
rules for all the letters.
It means that if we were to run the process for 2 letters only, this
table will tell us.

But what if we had more than 2 letters in the series?
Words form a chain of letters.

A Markov Chain is a process that consists of a finite or countable
number of states and some known probabilities Pi,j, where Pi,j is
the probability of moving from state i to state j.

In our case:
- The finite number of states is the amount of letters in the
alphabet.
- The known probabilities are the output of the RAE Dictionary
analysis, the Stochastic Matrix
- i is the letter before j.
- j is the actual letter.
- Pi,j is the probability of j ocurring after i.

The Stochastic Matrix plots j at the horizontal axis, i at the
vertical axis, and Pi,j inside the table.
Note: Due to ease of coding, this plotting does not follow the
English Mathematics convention that uses the rows as the
Probability Vectors. In this work, columns sum to one, and not rows.

The output of this process is the following Matrix:

Table of Normalized Data
Stochastic Matrix of letter ocurrences in the RAE Dictionary

Validation

I was filled with great satisfaction when Julia Picabea, the mathema-
tician at Continente 7, who did a work on cryptography, referred
me to a table at Wikipedia that showed the most frequently
occurring letters in many languages, including Spanish.

Right away, I started to code functions that will enable me to
visually distinguish Pi,j above a certain threshold.
My guess was that, after running the Chain for more than 2 letters
and for enough letters, the probabilities will tend to contrast and
stabilize: letters with higher occurrences will raise the probabilities
of all the other letters to pair with it, and the ones with lower
occurrences will sink.

And indeed, after enough runs (evolutions), I could see a clear
distinction of higher probabilities, which I then compared to the
table at Wikipedia.
The numbers matched. Letters e,a,o,i,s,r,n appeared with the most
frequency at both, over 6%.

This validated the text analysis and the later normalization to
Probability Vectors.

The following tables with Visual Guides show:

1. Original Stochastic Matrix.
2. Matrix after a couple of evolutions. Notice how vowels rule!

Reds show mapped values from 0 to Maximum Probability calculated.
Greens show values over a specified threshold.

Table of Normalized Data
Stochastic Matrix (no evolutions) - Highlighting values over 30 %

Table of Evolved Normalized Data
Matrix after a couple of Evolutions - Highlighting values over 6 %. A reason for letter “S” not passing the bar might be that there are no plurals in dictionaries, therefore less ocurrences.

Markov Chain Evolution

To understand how we can calculate probabilities after a certain
number of events, let´s evaluate a process for a simple Stochastic
matrix of 2 states:

To find Pi,j (Probability of j, happening after i), after 2 iterations 'N'
(the second “roll of dice”) we need to cover all the possible
combinations to get there. This means multiplying the last matrix
obtained (at N = 2 it is the same as the original) by the original
stochastic matrix.
So to fill the entire table with the new probabilities, we have to:

PA,A = (P1,1 x P1,1)+(P1,2 x P2,1) = (0.25 x 0,25)+(0.75 x 0.5) = 0,4375
PA,B = (P1,1 x P1,2)+(P1,2 x P2,2) = (0.25 x 0,75)+(0.75 x 0.5) = 0,5625
PB,A = (P2,1 x P1,1)+(P2,2 x P2,1) = (0.5 x 0,25)+(0.5 x 0.5) = 0,375
PB,B = (P2,2 x P2,2)+(P2,1 x P1,2) = (0.5 x 0,5)+(0.5 x 0.75) = 0,625

The Evolved Matrix, for N = 2, is:

If we are to find out the Evolved Matrix after 3 iterations, we
would have to multiply the N = 2 Matrix by the Original
Stochastic Matrix. For 4 iterations: N=3 x Original.
And so on, always multiplying N-1 by Original.
And repeat the process every time we want to evolve the
matrix.

A
1

1

2

2

0.25 0.5

0.75

1.0 1.0

0.5

i
j

A
B

B

A
1

1

2

2

0.4375 0.375

0.5625

1.0 1.0

0.625

i
j

A
B

B

ORIGINAL MATRIX EVOLVED MATRIX

Algorithm to Code

Coding this will be translating it into a couple of nested loops.
(Pseudo/Code in Processing(Java)).

char[] letters = letters in the alphabet;

float[][] originalMatrix = RAE Dictionary analysis;

float[][] evolvedMatrix = originalMatrix;

int matrixLength = letters.length();

for (nIteration) { // NUMBER OF EVOLUTIONS

 float[][] tempEvolvedMatrix = new float[matrixLength][matrixLength];

 for (int i = 0; i < matrixLength; i++) {

 for (int j = 0; j < matrixLength; j++) {

 float P = 0;

 for (int r = 0; r < matrixLength; r++) {

 P += originalMatrix[i][r] * evolvedMatrix[r][j];

 }

 tempEvolvedMatrix[i][j] = P;

 }

 }

 arraycopy(tempEvolvedMatrix, evolvedMatrix);

}

There are 4 iterating loops:
1 - A Global matrix evolution iterator
2 - A run through all i´s
3 - A run through all j´s
4 - A loop to iterate through all posible combinations of state,
that will add up to find Pi,j.

The variable P captures Pi,j, which is then stored in a temporal
Evolved matrix, which at the end is copied to the final Evolved
Matrix. This is done this way because the Evolved Matrix should
not be refreshed until all P´s have been calculated, since the
fourth loop will search back to the matrix to find the values to
work with.

responds to iterating Pi,j += Ai,r x Br,j on all possible states/ways
from i to j:

nIteration is set by the number of characters the user inputs.
Therefore each letter probability will be related to the probability of
each previous letter through the evolution.
For the word “Afro”, the letter “o” will have the resulting probability
of evolving the matrix 3 times, for the pairs “Af”, “fr”, “ro”.

for (int r = 0; r < matrixLength; r++) {

 P += originalMatrix[i][r] * evolvedMatrix[r][j];

}

PA,A = (P1,1 x P1,1)+(P1,2 x P2,1)+(P1,3 x P3,1)+(P1,4 x P4,1) + and so on...

iteration r = 0 r = 1 r = 2 r = 3

Values of Dimension

Done with the hardcore maths, I was able to extract values to use in
a Cartesian Coordinates System.

The X and Y coordinates are simply extracted from the position of
the pair of letter in the matrix, and the Z coordinate is the Pi,j.

For instance: Pa,z will have coordinates:
X = 0
Y = Maximum (screen height)
Z = Pa,z

With these coordinates, a Depth Map image can be created.
This will be a greyscale bitmap where the “pikes of the mountains”,
placed at X-Y, have a height of Z represented by mapping Z to the
grey values and sloping down the mountain within a chosen radius.
Pair of letters with higher probabilities will define a higher mountain
(a whiter spot).

The result is a grey canvas where the intersections between
mountains create some turbulence that will give the later
graphical functions some delight.

Depth Map
Think of it as an aerial view of mountains with ground level at Black, and peak at White

Creative Graphics

Armed with an array of single node coordinates (the mountains),
and a bitmap that represents the interaction of these nodes across
the canvas, the graphical functions can have a great degree of
freedom.

The coder has access not only to a certain node in particular, but to a
specific pixel in the screen that contains data about surrounding
nodes and how they fit together.

Most of the renders shown in the gallery are based on an invisible
grid traced upon the canvas that reads on the Depth Map.
Some grids are wide, some are as close as 1 pixel.

By going through the process described, the MarkovPaint
project effectively transform the rigid maths of probability
calculation to something as creative and artistic as a canvas full
of colors and shapes.

Any coder can take the array of node data and the Depth Map
and come up with totally different graphical representation,
which will be, at the same time, totally different in relation to
the initial word input, and will also have a third degree of
freedom if the text analyzed is other.

Feel free to paint your own canvas of your own Markov Chain.

Agustin Ramos Anzorena

